Empowering study of breast cancer data with application of artificial intelligence technology: promises, challenges, and use cases

6Citations
Citations of this article
64Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In healthcare, artificial intelligence (AI) technologies have the potential to create significant value by improving time-sensitive outcomes while lowering error rates for each patient. Diagnostic images, clinical notes, and reports are increasingly generated and stored in electronic medical records. This heterogeneous data presenting us with challenges in data analytics and reusability that is by nature has high complexity, thereby necessitating novel ways to store, manage and process, and reuse big data. This presents an urgent need to develop new, scalable, and expandable AI infrastructure and analytical methods that can enable healthcare providers to access knowledge for individual patients, yielding better decisions and outcomes. In this review article, we briefly discuss the nature of data in breast cancer study and the role of AI for generating “smart data” which offer actionable information that supports the better decision for personalized medicine for individual patients. In our view, the biggest challenge is to create a system that makes data robust and smart for healthcare providers and patients that can lead to more effective clinical decision-making, improved health outcomes, and ultimately, managing the healthcare outcomes and costs. We highlight some of the challenges in using breast cancer data and propose the need for an AI-driven environment to address them. We illustrate our vision with practical use cases and discuss a path for empowering the study of breast cancer databases with the application of AI and future directions.

Cite

CITATION STYLE

APA

Panahiazar, M., Chen, N., Lituiev, D., & Hadley, D. (2022, February 1). Empowering study of breast cancer data with application of artificial intelligence technology: promises, challenges, and use cases. Clinical and Experimental Metastasis. Springer Science and Business Media B.V. https://doi.org/10.1007/s10585-021-10125-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free