A quantitative investigation on the individual effects of sodium (NaCl), potassium (KCl), calcium (CaCl2), and magnesium (MgCl2) chloride salts against Lactobacillus pentosus and Saccharomyces cerevisiae, two representative microorganisms of table olives and other fermented vegetables, was carried out. In order to assess their potential activities, both the kinetic growth parameters and dose-response profiles in synthetic media (deMan Rogosa Sharpe broth medium and yeast-malt-peptone-glucose broth medium, respectively) were obtained and analyzed. Microbial growth was monitored via optical density measurements as a function of contact time in the presence of progressive chloride salt concentrations. Relative maximum specific growth rate and lag-phase period were modeled as a function of the chloride salt concentrations. Moreover, for each salt and microorganism tested, the noninhibitory concentrations and the MICs were estimated and compared. All chloride salts exerted a significant antimicrobial effect on the growth cycle; particularly, CaCl2 showed a similar effect to NaCl, while KCl and MgCl2 were progressively less inhibitory. Microbial susceptibility and resistance were found to be nonlinearly dose related. Copyright ©, International Association for Food Protection.
CITATION STYLE
Bautista-Gallego, J., Arroyo-López, F. N., Durán-Quintana, M. C., & Garrido-Fernández, A. (2008). Individual effects of sodium, potassium, calcium, and magnesium chloride salts on Lactobacillus pentosus and Saccharomyces cerevisiae growth. Journal of Food Protection, 71(7), 1412–1421. https://doi.org/10.4315/0362-028X-71.7.1412
Mendeley helps you to discover research relevant for your work.