Springer-Verlag Italia s.r.l., (2015), 133-166

0Citations

22Readers

With this chapter we begin the study of functional analysis, which represents the second mainÂ topic of this book. Just like in the first part of the book we have shown how to extend to an abstract environment fundamental analytical notions such as the integral of a real function, we now intend to explain how to generalize basic concepts from geometry and linear algebra to vector spaces with certain additional structures. We shall first examine Hilbert spaces, where the notion of orthogonal vectors can be defined thanks to the presence of a scalar product. In the next chapter, our analysis will move to the more general class of Banach spaces, where orthogonality no longer makes sense. One could go even further and consider topological vector spaces, but such a level of generality would exceed the scopes of this monograph.

CITATION STYLE

APA

Cannarsa, P., & D’Aprile, T. (2015). Hilbert spaces. In *UNITEXT - La Matematica per il 3 piu 2* (Vol. 89, pp. 133–166). Springer-Verlag Italia s.r.l. https://doi.org/10.1007/978-3-319-17019-0_5

Mendeley helps you to discover research relevant for your work.

Already have an account? Sign in

Sign up for free