Innovative SETI by the KLT

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

SETI searches are, by definition, the extraction of very weak radio signals out of the cosmic background noise. When SETI was born in 1959, it was "natural" to attempt this extraction by the only detection algorithm well known at the time: the Fourier Transform (FT). In fact: 1) SETI radio astronomers had adopted the viewpoint that a candidate ET signal would necessarily be a sinusoidal carrier, i.e. a very narrow-band signal. Over such a narrow band, the background noise is necessarily white. And so, the basic assumption behind the FT that the background noise must be white was "perfectly matched" to SETI for the next fifty years! 2) In addition, the Americans, J. W. Cooley and J. W. Tukey discovered in April 1965 that all the FT computations could be speeded up to N∗ln(N) (rather than N2) (N is the number of numbers to be processed) by their own Fast Fourier Transform (FFT). Then, SETI radio astronomers all over the world gladly and unquestioningly adopted the new FFT forever. In 1983, however, the French SETI radio astronomer, François Biraud, dared to challenge this view (ref. [6]). He argued that we only can make guesses about ET's telecommunication systems, and that the shifting trend on Earth was from narrow-band to wide-band telecommunications. Thus, a new transform, other than the FFT, was needed that could detect signals over both narrow and wide bands, regardless of the colored noise distribution over any finite bandwidth. Such a transform had actually been pointed out as early as 1946 by the Finn mathematician, Kari Karhunen, and the French mathematician, Michel Loève, and is thus named KLT for them. In conclusion, François Biraud suggested to "look for the unknown in SETI" by adopting the KLT rather than the FFT. The same ideas were reached independently by this author also, and starting 1987, he too was "preaching the KLT": first at the SETI Institute, then (since 1990) at the Italian CNR (now called INAF) SETI facilities at Medicina, near Bologna. Their director, Stelio Montebugnoli, was willing to pay attention to him. Little by little, bright students succeeded in programming the KLT algorithm for the Medicina radio telescopes. Finally, by the year 2000, the advent of programmable cards, mastered by Montebugnoli, made the "miracle" happen. The KLT for SETI is now a reality at the SETI-Italia facilities and for the first time in history. This paper describes the KLT with a final section devoted to the advantages of installing the KLT on LOFAR and the SKA, i.e. to detecting leakage from nearby stars.

Cite

CITATION STYLE

APA

Maccone, C. (2007). Innovative SETI by the KLT. In Proceedings of Science (Vol. 56). Sissa Medialab Srl. https://doi.org/10.22323/1.056.0034

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free