Using diffusion tensor imaging to identify corticospinal tract projection patterns in children with unilateral spastic cerebral palsy

32Citations
Citations of this article
97Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Aim: To determine whether diffusion tensor imaging (DTI) can be an independent assessment for identifying the corticospinal tract (CST) projecting from the more-affected motor cortex in children with unilateral spastic cerebral palsy (CP). Method: Twenty children with unilateral spastic CP participated in this study (16 males, four females; mean age 9y 2mo [standard deviation (SD) 3y 2mo], Manual Ability Classification System [MACS] level I–III). We used DTI tractography to reconstruct the CST projecting from the more-affected motor cortex. We mapped the motor representation of the more-affected hand by stimulating the more- and the less-affected motor cortex measured with single-pulse transcranial magnetic stimulation (TMS). We then verified the presence or absence of the contralateral CST by comparing the TMS map and DTI tractography. Fisher's exact test was used to determine the association between findings of TMS and DTI. Results: DTI tractography successfully identified the CST controlling the more-affected hand (sensitivity=82%, specificity=78%). Interpretation: Contralateral CST projecting from the lesioned motor cortex assessed by DTI is consistent with findings of TMS mapping. Since CST connectivity may be predictive of response to certain upper extremity treatments, DTI-identified CST connectivity may potentially be valuable for determining such connectivity where TMS is unavailable or inadvisable for children with seizures.

Cite

CITATION STYLE

APA

Kuo, H. C., Ferre, C. L., Carmel, J. B., Gowatsky, J. L., Stanford, A. D., Rowny, S. B., … Friel, K. M. (2017). Using diffusion tensor imaging to identify corticospinal tract projection patterns in children with unilateral spastic cerebral palsy. Developmental Medicine and Child Neurology, 59(1), 65–71. https://doi.org/10.1111/dmcn.13192

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free