Purpose: We investigated whether expression of activator proteins that control follicle reserve and growth change after ovarian tissue vitrification and re-transplantation. Moreover, we assessed whether inhibition of mTOR signaling pathway by rapamycin would protect primordial follicle reserve after ovarian tissue freezing/thawing and re-transplantation. Methods: Fresh control, frozen/thawed, fresh-transplanted, frozen/thawed and transplanted, rapamycin/control, rapamycin fresh-transplanted, and rapamycin frozen-thawed and transplanted groups were established in rats. After freezing and thawing process, two ovaries were transplanted into the back muscle of the same rat. After 2 weeks, grafts were harvested, fixed, and embedded into paraffin block. Normal and atretic primordial/growing follicle count was performed in all groups. Ovarian tissues were evaluated for the dynamic expressions of Gdf-9, Bmp-15, KitL, Lif, Fgf-2, and p-s6K using immunohistochemistry, and H-score analyses were done. Results: Primordial follicle reserve reduced almost 50% after ovarian tissue re-transplantation. Expression of Gdf-9 and Lif increased significantly in primordial and growing follicles in frozen-thawed, fresh-transplanted, and frozen/thawed and transplanted groups, whereas expression of Bmp-15, KitL, and Fgf-2 decreased in primordial follicles. Freezing and thawing of ovarian tissue solely significantly increased p-s6K expression in primordial follicles, and on the other hand, suppression of mTORC1 pathway using rapamycin preserved the primordial follicle pool. Conclusion: Altered expressions of activator proteins that regulate primordial follicle reserve and growth may lead to primordial follicle loss and rapamycin treatment can protect ovarian reserve after ovarian tissue cryopreservation/transplantation.
CITATION STYLE
Celik, S., Ozkavukcu, S., & Celik-Ozenci, C. (2020). Altered expression of activator proteins that control follicle reserve after ovarian tissue cryopreservation/transplantation and primordial follicle loss prevention by rapamycin. Journal of Assisted Reproduction and Genetics, 37(9), 2119–2136. https://doi.org/10.1007/s10815-020-01875-7
Mendeley helps you to discover research relevant for your work.