Free energy differences are a central quantity of interest in physics, chemistry, and biology. We develop design principles that improve the precision and accuracy of free energy estimators, which have potential applications to screening for targeted drug discovery. Specifically, by exploiting the connection between the work statistics of time-reversed protocol pairs, we develop near-equilibrium approximations for moments of the excess work and analyze the dominant contributions to the precision and accuracy of standard nonequilibrium free-energy estimators. Within linear response, minimum-dissipation protocols follow the geodesics of the Riemannian metric induced by the Stokes friction tensor. We find that the next-order contribution arises from the rank-3 supra-Stokes tensor that skews the geometric structure such that minimum-dissipation protocols follow the geodesics of a generalized cubic Finsler metric. Thus, near equilibrium, the supra-Stokes tensor determines the leading-order contribution to the bias of bidirectional free-energy estimators.
CITATION STYLE
Blaber, S., & Sivak, D. A. (2020). Skewed thermodynamic geometry and optimal free energy estimation. Journal of Chemical Physics, 153(24). https://doi.org/10.1063/5.0033405
Mendeley helps you to discover research relevant for your work.