This paper proposes a human gait tracking system using a dual foot-mounted IMU and multiple 2D LiDARs. The combining system aims to overcome the disadvantages of each single sensor system (the short tracking range of the single 2D LiDAR and the drift errors of the IMU system). The LiDARs act as anchors to mitigate the errors of an inertial navigation algorithm. In our system, two 2D LiDARs are used. LiDAR 1 is placed around the starting point, and LiDAR 2 is placed at the ending point (in straight walking) or at the turning point (in rectangular path walking). Using the LiDAR 1, we can estimate the initial headings and positions of each IMU without any calibration process. We also propose a method to calibrate two LiDARs that are placed far apart. Then, the measurement from two LiDARs can be combined in a Kalman filter and the smoother algorithm to correct the two estimated feet trajectories. If straight walking is detected, we update the current stride heading and the foot position using the previous stride headings. Then, it is used as a measurement update in the Kalman filter. In the smoother algorithm, a step width constraint is used as a measurement update. We evaluate the stride length estimation through a straight walking experiment along a corridor. The root mean square errors compared with an optical tracking system are less than 3 cm. The performance of proposed method is also verified with a rectangular path walking experiment.
CITATION STYLE
Duong, H. T., & Suh, Y. S. (2022). A Human Gait Tracking System Using Dual Foot-Mounted IMU and Multiple 2D LiDARs. Sensors, 22(17). https://doi.org/10.3390/s22176368
Mendeley helps you to discover research relevant for your work.