Dendritic macrosurfactant assembly for physical functionalization of HIPE-templated polymers

3Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

High-internal-phase emulsion-templated macroporous polymers (polyHIPEs) have attracted much interest, but their surface functionalization remains a primary concern. Thus, competitive surface functionalization via physical self-assembly of macrosurfactants was reviewed. Dendritic and diblock-copolymer macrosurfactants were tested, and the former appeared to be more topologically competitive in terms of solubility, viscosity, and versatility. In particular, hyperbranched polyethyleneimine (PEI) was transformed into dendritic PEI macrosurfactants through click-like N-alkylation with epoxy compounds. Free-standing PEI macrosurfactants were used as molecular nanocapsules for charge-selective guest encapsulation and robustly dictated the surface of a macroporous polymer through the HIPE technique, in which the macroporous polymer could act as a well-recoverable adsorbent. Metal nanoparticle-loaded PEI macrosurfactants could similarly lead to polyHIPE, whose surface was dictated by its catalytic component. Unlike conventional Pickering stabilizer, PEI macrosurfactant-based metal nanocomposite resulted in open-cellular polyHIPE, rendering the catalytic sites well accessible. The active amino groups on the polyHIPE could also be transformed into functional groups of aminopolycarboxylic acids, which could efficiently eliminate trace and heavy metal species in water.

Cite

CITATION STYLE

APA

Li, C., Weng, S., Jin, M., & Wan, D. (2020, April 1). Dendritic macrosurfactant assembly for physical functionalization of HIPE-templated polymers. Polymers. MDPI AG. https://doi.org/10.3390/POLYM12040779

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free