Structural basis for PoxtA-mediated resistance to phenicol and oxazolidinone antibiotics

28Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

PoxtA and OptrA are ATP binding cassette (ABC) proteins of the F subtype (ABCF). They confer resistance to oxazolidinone and phenicol antibiotics, such as linezolid and chloramphenicol, which stall translating ribosomes when certain amino acids are present at a defined position in the nascent polypeptide chain. These proteins are often encoded on mobile genetic elements, facilitating their rapid spread amongst Gram-positive bacteria, and are thought to confer resistance by binding to the ribosome and dislodging the bound antibiotic. However, the mechanistic basis of this resistance remains unclear. Here we refine the PoxtA spectrum of action, demonstrate alleviation of linezolid-induced context-dependent translational stalling, and present cryo-electron microscopy structures of PoxtA in complex with the Enterococcus faecalis 70S ribosome. PoxtA perturbs the CCA-end of the P-site tRNA, causing it to shift by ∼4 Å out of the ribosome, corresponding to a register shift of approximately one amino acid for an attached nascent polypeptide chain. We postulate that the perturbation of the P-site tRNA by PoxtA thereby alters the conformation of the attached nascent chain to disrupt the drug binding site.

Cite

CITATION STYLE

APA

Crowe-McAuliffe, C., Murina, V., Turnbull, K. J., Huch, S., Kasari, M., Takada, H., … Hauryliuk, V. (2022). Structural basis for PoxtA-mediated resistance to phenicol and oxazolidinone antibiotics. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-29274-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free