Abstract: Control of microvascular network growth is critical to treatment of ischemic tissue diseases and enhancing regenerative capacity of tissue engineering implants. Conventional therapeutic strategies for inducing angiogenesis aim to deliver one or more pro-angiogenic cytokines or to over-express known pro-angiogenic genes, but seldom address potential compensatory or cooperative effects between signals and the overarching signaling pathways that determine successful outcomes. An emerging grand challenge is harnessing the expanding knowledge base of angiogenic signaling pathways toward development of successful new therapies. We previously performed drug optimization studies by various substitutions of a 2-(2,6-dioxo-3-piperidyl)isoindole-1,3-dione scaffold to discover novel bioactive small molecules capable of inducing growth of microvascular networks, the most potent of which we termed phthalimide neovascularization factor 1 (PNF1, formerly known as SC-3-149). We then showed that PNF-1 regulates the transcription of signaling molecules that are associated with vascular initiation and maturation in a time-dependent manner through a novel pathway compendium analysis in which transcriptional regulatory networks of PNF-1-stimulated microvascular endothelial cells are overlaid with literature-derived angiogenic pathways. In this study, we generated three analogues (SC-3-143, SC-3-263, SC-3-13) through systematic transformations to PNF1 to evaluate the effects of electronic, steric, chiral, and hydrogen bonding changes on angiogenic signaling. We then expanded our compendium analysis toward these new compounds. Variables obtained from the compendium analysis were then used to construct a PLSR model to predict endothelial cell proliferation. Our combined approach suggests mechanisms of action involving suppression of VEGF pathways through TGF-β and NR3C1 network activation. Lay Summary: Previously, we discovered a novel small molecule (PNF1) that is capable of inducing growth of microvascular networks, a mechanism that is very important in many regenerative applications. In this study, we alter the structure of PNF1 slightly to get three different analogues and focus on gaining insight into how these drugs induce their pro-angiogenic effects. This is done through a few techniques that result in a map of all the transcripts that are up- or downregulated as a result of administering the drug, a knowledge that is necessary for successful therapeutic strategies. Future Studies: Angiogenesis and neovascularization is important in a number of regenerative medicine therapeutics, including soft tissue regeneration. Having a deep understanding of the transcriptional mechanism of small molecules with this angiogenic potential will aid in designing specific immunomodulatory biomaterials. In the future, we will study these drugs and their angiogenic properties in impactful and clinically translatable applications.
CITATION STYLE
Das, A., Merrill, P., Wilson, J., Turner, T., Paige, M., Capitosti, S., … Botchwey, E. A. (2019). Evaluating Angiogenic Potential of Small Molecules Using Genetic Network Approaches. Regenerative Engineering and Translational Medicine, 5(1), 30–41. https://doi.org/10.1007/s40883-018-0077-8
Mendeley helps you to discover research relevant for your work.