Motif participation by genes in E. coli transcriptional networks

12Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Motifs are patterns of recurring connections among the genes of genetic networks that occur more frequently than would be expected from randomized networks with the same degree sequence. Although the abundance of certain three-node motifs, such as the feed-forward loop, is positively correlated with a networks' ability to tolerate moderate disruptions to gene expression, little is known regarding the connectivity of individual genes participating in multiple motifs. Using the transcriptional network of the bacterium Escherichia coli, we investigate this feature by reconstructing the distribution of genes participating in feed-forward loop motifs from its largest connected network component. We contrast these motif participation distributions with those obtained from model networks built using the preferential attachment mechanism employed by many biological and manmade networks. We report that, although some of these model networks support a motif participation distribution that appears qualitatively similar to that obtained from the bacterium E. coli, the probability for a node to support a feed-forward loop motif may instead be strongly influenced by only a few master transcriptional regulators within the network. From these analyses we conclude that such master regulators may be a crucial ingredient to describe coupling among feed-forward loop motifs in transcriptional regulatory networks. © 2012 Mayo, Abdelzaher, Perkins and Ghosh.

Cite

CITATION STYLE

APA

Mayo, M., Abdelzaher, A. F., Perkins, E. J., & Ghosh, P. (2012). Motif participation by genes in E. coli transcriptional networks. Frontiers in Physiology, 3 SEP. https://doi.org/10.3389/fphys.2012.00357

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free