Music-elicited emotion identification using optical flow analysis of human face

0Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Human emotion identification from image sequences is highly demanded nowadays. The range of possible applications can vary from an automatic smile shutter function of consumer grade digital cameras to Biofied Building technologies, which enables communication between building space and residents. The highly perceptual nature of human emotions leads to the complexity of their classification and identification. The main question arises from the subjective quality of emotional classification of events that elicit human emotions. A variety of methods for formal classification of emotions were developed in musical psychology. This work is focused on identification of human emotions evoked by musical pieces using human face tracking and optical flow analysis. Facial feature tracking algorithm used for facial feature speed and position estimation is presented. Facial features were extracted from each image sequence using human face tracking with local binary patterns (LBP) features. Accurate relative speeds of facial features were estimated using optical flow analysis. Obtained relative positions and speeds were used as the output facial emotion vector. The algorithm was tested using original software and recorded image sequences. The proposed technique proves to give a robust identification of human emotions elicited by musical pieces. The estimated models could be used for human emotion identification from image sequences in such fields as emotion based musical background or mood dependent radio.

Cite

CITATION STYLE

APA

Kniaz, V. V., & Smirnova, Z. N. (2015). Music-elicited emotion identification using optical flow analysis of human face. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives (Vol. 40, pp. 27–32). International Society for Photogrammetry and Remote Sensing. https://doi.org/10.5194/isprsarchives-XL-5-W6-27-2015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free