The three-dimensional structure of activated factor IX comprises multiple contacts between the two epidermal growth factor (EGF)-like domains. One of these is a salt bridge between Glu78 and Arg94, which is essential for binding of factor IXa to its cofactor factor VIII and for factor VIII- dependent factor X activation (Christophe, O. D., Lenting, P. J., Kolkman, J. A., Brownlee, G. G., and Mertens, K. (1998) J. Biol. Chem. 273, 222-227). We now addressed the putative hydrophobic contact at the interface between the EGF-like domains. Recombinant factor IX chimeras were constructed in which hydrophobic regions Phe75-Phe77 and Lys106-Val108 were replaced by the corresponding sites of factor X and factor VII. Activated factor IX/factor X chimeras were indistinguishable from normal factor IXa with respect to factor IXa enzymatic activity. In contrast, factor IXa75-77/factor VII displayed asymptotically equal to-2-fold increased factor X activation in the presence of factor VIII, suggesting that residues 75-77 contribute to cofactor-dependent factor X activation. Activation of factor X by factor IX106-108/factor VII was strongly decreased, both in the absence and presence of factor VIII. Activity could be restored by simultaneous substitution of the hydrophobic sites in both EGF-like domains for factor VII residues. These data suggest that factor IXa enzymatic activity requires hydrophobic contact between the two EGF-like domains.
CITATION STYLE
Celie, P. H. N., Lenting, P. J., & Mertens, K. (2000). Hydrophobic contact between the two epidermal growth factor-like domains of blood coagulation factor IX contributes to enzymatic activity. Journal of Biological Chemistry, 275(1), 229–234. https://doi.org/10.1074/jbc.275.1.229
Mendeley helps you to discover research relevant for your work.