Although belowground biomass (BGB) plays an important role in global cycling, the storage of BGB and climatic effects on it are remaining unclear. With data from 49 sites, we aimed to investigate BGB and its climatic controls in alpine shrublands in the Tibetan Plateau. Our study showed that the BGB (both grass-layer and shrub-layer biomass) storage in the alpine shrublands was 67.24 Tg, and the mean BGB density and shrublands area were 1,567.38 g/m2 and 4.29 × 104 km2, respectively. Shrub layer had a larger BGB stock and accounted for 66% of total BGB this area, while only 34% was accumulated in the grass layer. BGB of the grass layer in the Tibetan Plateau shrublands was larger than that of Tibetan alpine grasslands, indicating that shrubland ecosystem played a critical importance role in carbon cycle on the Tibetan Plateau. The BGB in the grass layer and shrub layer demonstrated different correlations with climatic factors. Specifically, the effects from mean annual temperature on shrub-layer BGB were not significant, similarly to the relationship between mean annual precipitation and grass-layer BGB. But shrub-layer BGB had a significantly positive relationship with mean annual precipitation (p
CITATION STYLE
Xiuqing, N., Wang, D., Lucun, Y., Li, F., & Guoying, Z. (2020). Belowground biomass of alpine shrublands across the northeast Tibetan Plateau. Ecology and Evolution, 10(12), 5315–5322. https://doi.org/10.1002/ece3.6275
Mendeley helps you to discover research relevant for your work.