The fascia forms a hierarchy of spaces (small and large compartments) that contain and enclose muscle fibers, fiber bundles, skeletal muscles, and compartments of several skeletal muscles. Solid fascia serves as a membrane that enables an increased volume and fluid pressure within such a fasciomembrane, an intrafasciomembrial fluid pressure (IFMFP). Increased IFMFP provides a theoretical model and a common explanation for the etiology of the myalgias: trigger point (TrP), chronic exertional compartment syndrome (CECS), overtraining syndrome (OTS), and delayed onset muscle soreness (DOMS). Many myalgias and their symptoms are poorly understood, and this review aims to provide an extension to this theoretical model and novel approach. This review suggests that the swelling from elevated IFMFP also likely leads to a longitudinal shortening of the same affected tissue. This model of swelling and shortening provides additional explanations for the changes in the lines of force through the body that can lead to changes in the body's posture and, thus, to compensatory movements. This new approximation also provides a biomechanical explanation for the thickening of the fascia and referred pain, and also suggests that IFMFP is a factor in weather-related pain.
CITATION STYLE
Hopen, S. R. (2023). Intrafasciomembranal Fluid Pressure: A Novel Approach to the Etiology of Myalgias, Part II. Cureus. https://doi.org/10.7759/cureus.35163
Mendeley helps you to discover research relevant for your work.