The perception of reachability (i.e., whether an object is within reach) relies on body representations and action simulation. Similarly, egocentric distance estimation (i.e., the perception of the distance an object is from the self) is thought to be partly derived from embodied action simulation. Although motor simulation is important for both, it is unclear whether the cognitive processes underlying these behaviors rely on the same motor processes. To investigate this, we measured the impact of a motor interference dual-task paradigm on reachability judgment and egocentric distance estimation, while allocentric length estimation (i.e., how distant two stimuli are from each other independent from the self) was used as a control task. Participants were required to make concurrent actions with either hand actions of foam ball grip squeezing or arm actions of weight lifting, or no concurrent actions. Results showed that concurrent squeeze actions significantly slowed response speed in the reachability judgment and egocentric distance estimation tasks, but that there was no impact of the concurrent actions on allocentric length estimation. Together, these results suggest that reachability and distance perception, both egocentric perspective tasks, and in contrast to the allocentric perspective task, involve action simulation cognitive processes. The results are discussed in terms of the implication of action simulation when evaluating the position of a target relative to the observer's body, supporting an embodied view of spatial cognition.
CITATION STYLE
Grade, S., Pesenti, M., & Edwards, M. G. (2015). Evidence for the embodiment of space perception: Concurrent hand but not arm action moderates reachability and egocentric distance perception. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00862
Mendeley helps you to discover research relevant for your work.