Cultivation of marine microorganisms in single-use systems

17Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Marine cultures are an important source of novel substances and enzymes. As efforts to isolate strains from (deep) sea environments increase, the demand for methodology platforms to cultivate these organisms is also rising. Due to the high salt concentration and the shear sensitivity exhibited by some heterotrophic microalgae, single-use systems originally designed for the cultivation of mammalian cell lines can be a valuable alternative. Using the cultivation of the heterotrophic marine microalgae Crypthecodinium cohnii as an example, this chapter makes suggestions for experimental design, for improving process development by integrating parallel experiments, and for scaling-up and scalingdown methodologies. It describes how to identify suitable single-use systems and how to integrate a two-layer system with perfluordecalin to improve the gas transfer in deep-well plates. The process is also scaled up in several single-use systems. We also describe challenges in the process development to achieve sufficient oxygen transfer, monitoring, and control, and we discuss limitations such as corrosion, long-term stability, and leachables in single-use systems. Finally, we demonstrate a method for cheap, fast, and consistent process development for marine microorganisms.

Cite

CITATION STYLE

APA

Hillig, F., Pilarek, M., Junne, S., & Neubauer, P. (2014). Cultivation of marine microorganisms in single-use systems. Advances in Biochemical Engineering/Biotechnology, 138, 179–206. https://doi.org/10.1007/10_2013_219

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free