In silico selection of amplification targets for rapid polymorphism screening in ebola virus outbreaks

0Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

To achieve maximum transmission chain tracking in the current Ebola outbreak, whole genome sequencing (WGS) has been proposed to provide optimal information. However, WGS remains a costly and time-intensive procedure that is poorly suited for the large numbers of samples being generated, especially under severe time and work-environment constraints as in the present DRC outbreak. To better prepare for future outbreaks, where an apparent single outbreak may actually represent overlapping outbreaks caused by independent variants, and where rapid identification of emerging new transmission chains will be essential, a more practical method would be to amplify and sequence genomic areas that reveal the highest information to differentiate EBOV variants. We have identified four highly informative polymorphism PCR sequencing targets, suitable for rapid tracing of transmission chains and identification of new sources of Ebola outbreaks, an approach which will be far more practical in the field than WGS.

Cite

CITATION STYLE

APA

Wassenaar, T. M., Wanchai, V., Buzard, G. S., & Ussery, D. W. (2019). In silico selection of amplification targets for rapid polymorphism screening in ebola virus outbreaks. Frontiers in Microbiology, 10(APR). https://doi.org/10.3389/fmicb.2019.00857

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free