1D Barcode Detection: Novel Benchmark Datasets and Comprehensive Comparison of Deep Convolutional Neural Network Approaches

4Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

Abstract

Recent advancement in Deep Learning-based Convolutional Neural Networks (D-CNNs) has led research to improve the efficiency and performance of barcode recognition in Supply Chain Management (SCM). D-CNNs required real-world images embedded with ground truth data, which is often not readily available in the case of SCM barcode recognition. This study introduces two invented barcode datasets: InventBar and ParcelBar. The datasets contain labeled barcode images with 527 consumer goods and 844 post boxes in the indoor environment. To explore the influential capability of the datasets that affect recognition process, five existing D-CNN algorithms were applied and compared over a set of recently available barcode datasets. To confirm the model’s performance and accuracy, runtime and Mean Average Precision (mAP) were examined based on different IoU thresholds and image transformation settings. The results show that YOLO v5 works best for the ParcelBar in terms of speed and accuracy. The situation is different for the InventBar since Faster R-CNN could allow the model to learn faster with a small drop in accuracy. It is proven that the proposed datasets can be practically utilized for the mainstream D-CNN frameworks. Both are available for developing barcode recognition models and positively affect comparative studies.

Cite

CITATION STYLE

APA

Kamnardsiri, T., Charoenkwan, P., Malang, C., & Wudhikarn, R. (2022). 1D Barcode Detection: Novel Benchmark Datasets and Comprehensive Comparison of Deep Convolutional Neural Network Approaches. Sensors, 22(22). https://doi.org/10.3390/s22228788

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free