Heuristic Approach to Select Opportunistic Routing Forwarders (HASORF) to Enhance Throughput for Wireless Sensor Networks

8Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Biological schemes provide useful resources for designing adaptive routing protocols for wireless sensor networks (WSNs). The key idea behind using bioinspired routing is to find the optimal path to the destination. Similarly, the idea of opportunistic routing (OR) is to find the least number of hops to deliver the data to the destination. Numerous routing schemes have been proposed in WSNs while targeting various performance goals, such as throughput, delay, and link quality. Recently, OR schemes have come onto the scene in comparison with the traditional routing algorithms. The performance of OR schemes, however, highly depends on the selection of forwarder nodes. In this paper, we consider a chain network topology, where nodes are separated by an equal distance. The throughput of the chain network is analyzed mathematically, and based on the analysis results, a heuristic algorithm is proposed to choose the forwarder nodes. We evaluate the performance of the proposed Heuristic Approach to Select Opportunistic Routing Forwarders (HASORF) by using the ns-2 simulator and compare it with previous schemes, such as random routing, Extremely Opportunistic Routing (ExOR), and Simple Opportunistic Adaptive Routing (SOAR). The empirical results show that our proposed scheme achieves the best performance among them.

Cite

CITATION STYLE

APA

Zikria, Y. B., Nosheen, S., Choi, J. G., & Kim, S. W. (2015). Heuristic Approach to Select Opportunistic Routing Forwarders (HASORF) to Enhance Throughput for Wireless Sensor Networks. Journal of Sensors, 2015. https://doi.org/10.1155/2015/634759

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free