The large amount of nitrogen oxides (N2O, NO, NO2, etc.) contained in the flue gas of industrial adipic acid production will seriously damage the environment. A designed binuclear Cu-ZSM-5 catalyst can be applied to decompose N2O and reduce NO and NO2, purifying the air environment. Using the density functional theory method, the catalytic decomposition mechanisms of N2O, NOX-NH3-SCR, and NOX-assisted N2O decomposition is simulated over the Cu-ZSM-5 model. The results indicate that N2O can be catalytically decomposed over the binuclear Cu active site in the sinusoidal channel. The speed-limiting step is the second N2O molecule activation process. After the decomposition of the first N2O molecule, a stable extra-frame [Cu-O-Cu]2+ structure will generate. The subsequent discussion proved that the NOX-NH3-SCR reaction can be realized over the [Cu-O-Cu]2+ active site. In addition, it proved that the decomposition reaction of NO and NO2 can be carried out over the [Cu-O-Cu]2+ active site, and NO can greatly reduce the energy barrier for the conversion of the active site from [Cu-O-Cu]2+ to the binuclear Cu form, while NO2 can be slightly reduced. Through discussion, it is found that the binuclear Cu-ZSM-5 can realize the combined removal of N2O and NOX from adipic acid flue gas, hoping to provide a theoretical basis for the development of a dual-functional catalyst.
CITATION STYLE
Gao, C., Li, J., Zhang, J., & Sun, X. (2022). DFT Study on the Combined Catalytic Removal of N2O, NO, and NO2 over Binuclear Cu-ZSM-5. Catalysts, 12(4). https://doi.org/10.3390/catal12040438
Mendeley helps you to discover research relevant for your work.