Image reconstruction using minimal measured information has been a long-standing open problem in many computational imaging approaches, in particular in-line holography. Many solutions are devised based on compressive sensing (CS) techniques with handcrafted image priors or supervised deep neural networks (DNN). However, the limited performance of CS methods due to lack of information about the image priors and the requirement of an enormous amount of per-sample-type training resources for DNNs has posed new challenges over the primary problem. In this study, we propose a single-shot lensless in-line holographic reconstruction method using an untrained deep neural network which is incorporated with a physical image formation algorithm. We demonstrate that by modifying a deep decoder network with simple regularizers, a Gabor hologram can be inversely reconstructed via a minimization process that is constrained by a deep image prior. The outcoming model allows to accurately recover the phase and amplitude images without any training dataset, excess measurements, or specific assumptions about the object’s or the measurement’s characteristics.
CITATION STYLE
Niknam, F., Qazvini, H., & Latifi, H. (2021). Holographic optical field recovery using a regularized untrained deep decoder network. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-90312-5
Mendeley helps you to discover research relevant for your work.