Functional Diversity and Microbial Activity of Forest Soils that Are Heavily Contaminated by Lead and Zinc

50Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The objective of this study was to assess the impact of metal contamination on microbial functional diversity and enzyme activity in forest soils. This study involved the evaluation of the influence of the texture, carbon content and distance to the source of contamination on the change in soil microbial activity, which did not investigate in previous studies. The study area is located in southern Poland near the city of Olkusz around the flotation sedimentation pond of lead and zinc at the Mining and Metallurgical Company “ZGH Bolesław, Inc.”. The central point of the study area was selected as the middle part of the sedimentation pond. The experiment was conducted over a regular 500 × 500-m grid, where 33 sampling points were established. Contents of organic carbon and trace elements (Zn, Pb and Cd), pH and soil texture were investigated. The study included the determination of dehydrogenase and urease activities and microbial functional diversity evaluation based on the community-level physiological profiling approach by Biolog EcoPlate. The greatest reduction in the dehydrogenase and urease activities was observed in light sandy soils with Zn content >220 mg · kg−1 and a Pb content > 100 mg · kg−1. Soils with a higher concentration of fine fraction, despite having the greatest concentrations of metals, were characterized by high rates of Biolog®-derived parameters and a lower reduction of enzyme activity.

Cite

CITATION STYLE

APA

Pająk, M., Błońska, E., Frąc, M., & Oszust, K. (2016). Functional Diversity and Microbial Activity of Forest Soils that Are Heavily Contaminated by Lead and Zinc. Water, Air, and Soil Pollution, 227(9). https://doi.org/10.1007/s11270-016-3051-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free