Right by and by the Colossal Information applications, for case, social orchestrating, helpful human administrations, agribusiness, keeping cash, stock show, direction, Facebook and so forward are making the data with especially tall speed. Volume and Speed of the Immense data plays a fundamental bit interior the execution of Colossal data applications. Execution of the Colossal data application can be affected by distinctive parameters. Quickly watch, capacity and precision are the a significant parcel of the triumphant parameters which impact the by and gigantic execution of any Huge data applications. Due the energize and underhanded affiliation of the qualities of 7Vs of Colossal data, each Colossal Information affiliations expect the tall execution.Tall execution is the foremost obvious test within the display advancing condition. In this paper we propose the parallel course of action way to bargain with speedup the explore for closest neighbor center. k-NN classifier is the preeminent basic and comprehensively utilized method for gathering. In this paper we apply a parallelism thought to k-NN for looking the another closest neighbor. This neighbor center will be utilized for putting lost and execution of the remarkable data streams. This classifier unequivocally overhaul and coordinate of the out of date data streams. We are utilizing the Apache Begin and scattered estimation space affiliation for snappier evaluation.
CITATION STYLE
Brahmane, A. V., & Chaitanya Krishna, B. (2019). PNNCP-parallel nearest neighbor classification and prediction for big data application based on apache spark and machine learning. International Journal of Engineering and Advanced Technology, 9(1), 2358–2365. https://doi.org/10.35940/ijeat.A1382.109119
Mendeley helps you to discover research relevant for your work.