Machine learning, satellites or local sensors are key factors for a sustainable and resource-saving optimisation of agriculture and proved its values for the management of agricultural land. Up to now, the main focus was on the enlargement of data which were evaluated by means of supervised learning methods. Nevertheless, the need for labels is also a limiting and time-consuming factor, while in contrast, ongoing technological development is already providing an ever-increasing amount of unlabeled data. Self-supervised learning (SSL) could overcome this limitation and incorporate existing unlabeled data. Therefore, a crop type data set was utilized to conduct experiments with SSL and compare it to supervised methods. A unique feature of our data set from 2016 to 2018 was a divergent climatological condition in 2018 that reduced yields and affected the spectral fingerprint of the plants. Our experiments focused on predicting 2018 using SLL without or a few labels to clarify whether new labels should be collected for an unknown year. Despite these challenging conditions, the results showed that SSL contributed to higher accuracies. We believe that the results will encourage further improvements in the field of precision farming, why the SSL framework and data will be published (Marszalek, 2021).
CITATION STYLE
Marszalek, M. L., Le Saux, B., Mathieu, P. P., Nowakowski, A., & Springer, D. (2022). SELF-SUPERVISED LEARNING - A WAY TO MINIMIZE TIME AND EFFORT FOR PRECISION AGRICULTURE? In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives (Vol. 43, pp. 1327–1333). International Society for Photogrammetry and Remote Sensing. https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1327-2022
Mendeley helps you to discover research relevant for your work.