Comparative metabolomic analysis reveals a reactive oxygen species-dominated dynamic model underlying chilling environment adaptation and tolerance in rice

120Citations
Citations of this article
86Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cold, a major environmental stress for plants, has been studied intensively for decades. Its response system has been revealed, especially at the transcriptional level. The mechanisms underlying recovery growth and environmental adaptation, however, remain unknown. Taking advantage of a naturally existing system, two subspecies of Asian cultivated rice (Oryza sativa) with significant divergence in chilling tolerance, we analyzed representative japonica and indica varieties, Nipponbare and 93-11, using comparative metabolomic analysis at six time points covering chilling treatment and recovery. In total, 223 known metabolites were detected. During chilling treatment, significant biochemical changes were centered on antioxidation. During recovery, a wide-ranging chilling response was observed. Large-scale amino acid accumulation occurred, consistent with the appearance of chilling injury. At the mid-treatment stage, the accumulation of antioxidation-related compounds appeared earlier in Nipponbare than in 93-11, consistent with the higher reactive oxygen species (ROS) levels in japonica vs indica varieties. A significant contribution of ROS-mediated gene regulation, rather than the C-repeat binding factor/dehydration-responsive-element binding factor (CBF/DREB) regulon, to the more vigorous transcriptional stress response in Nipponbare was revealed by RNA-seq. Accordingly, during recovery, the induction of stress-tolerant-related metabolites was more active in the chilling-tolerant variety Nipponbare. Senescence-related compounds accumulated only in the chilling-sensitive variety 93-11. Our study uncovers the dynamic metabolic models underlying chilling response and recovery, and reveals a ROS-dominated rice adaptation mechanism to low-temperature environments.

Cite

CITATION STYLE

APA

Zhang, J., Luo, W., Zhao, Y., Xu, Y., Song, S., & Chong, K. (2016). Comparative metabolomic analysis reveals a reactive oxygen species-dominated dynamic model underlying chilling environment adaptation and tolerance in rice. The New Phytologist, 211(4), 1295–1310. https://doi.org/10.1111/nph.14011

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free