Is structural quality as assessed by the “profil cultural” method related to quantitative indicators of soil physical quality?

4Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

Soil and crop management systems change the soil structure, thereby affecting soil quality. The “profil cultural” method (PCM) has been used to identify the effects of management systems on soil structure; however, few studies relate the structures identified by the PCM to quantitative indicators of soil structural quality. This study aimed to quantify soil structures using the PCM and relate these structures to bulk density (Bd), critical bulk density (Bdc), soil aeration capacity (εa), least limiting water range (LLWR), and soil air permeability (Ka) under different soil and crop management systems. The study was developed in a long-term experiment (24 years) involving two systems of soil management (no-tillage and conventional tillage) and two systems of crop management (rotation and succession), resulting in four treatments: no-tillage with crop rotation (NTr), no-tillage with crop succession (NTs), conventional tillage with heavy harrowing and crop rotation (CTr) and conventional tillage with heavy harrowing and crop succession (CTs). The PCM was used to identify the different homogeneous morphological units (HMUs) in the soil profile. Undisturbed soil samples were collected for the HMUs that were most represented in the profiles to determine Ka, LLWR, Bd, and εa. There was agreement between the HMUs and the quantitative indicators. The LLWR showed greater values for Bdc under no-tillage (NTr = 1.36 Mg m-3 and NTs = 1.37 Mg m-3) than under conventional tillage (CTs = 1.31 Mg m-3 and CTr = 1.33 mg m-3). The proportion of samples where Bd > Bdc was 23 % under CTs, 77 % under CTr, 32% under NTs, and 39 % under NTr. The structures that were most restrictive to root development (CΔ, CΔµ, FmtΔµ, and FmtµΔ) show a lower Ka and greater soil penetration resistance as the soil dries. Pores are more continuous and the structure is less restrictive to plant development in no-tillage than in conventional tillage.

Cite

CITATION STYLE

APA

Watanabe, R., Tormena, C. A., Guimarães, M. de F., Tavares Filho, J., Ralisch, R., Franchini, J., & Debiasi, H. (2018). Is structural quality as assessed by the “profil cultural” method related to quantitative indicators of soil physical quality? Revista Brasileira de Ciencia Do Solo, 42. https://doi.org/10.1590/18069657rbcs20160393

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free