In the companion paper [T. S. Ingebrigtsen, S. Toxvaerd, O. J. Heilmann, T. B. Schrøder, and J. C. Dyre, "NVU dynamics. I. Geodesic motion on the constant-potential-energy hypersurface," J. Chem. Phys. (in press) an algorithm was developed for tracing out a geodesic curve on the constant-potential-energy hypersurface. Here, simulations of NVU dynamics are compared to results for four other dynamics, both deterministic and stochastic. First, NVU dynamics is compared to the standard energy-conserving Newtonian NVE dynamics by simulations of the Kob-Andersen binary Lennard-Jones liquid, its WCA version (i.e., with cut-off's at the pair potential minima), and the Lennard-Jones Gaussian liquid. We find identical results for all quantities probed: radial distribution functions, incoherent intermediate scattering functions, and mean-square displacement as function of time. Arguments are presented for the equivalence of NVU and NVE dynamics in the thermodynamic limit; in particular, to leading order in 1/N these two dynamics give identical time-autocorrelation functions. In the final part of the paper, NVU dynamics is compared to Monte Carlo dynamics, to a diffusive dynamics of small-step random walks on the constant-potential-energy hypersurface, and to Nos e -Hoover NVT dynamics. If time is scaled for the two stochastic dynamics to make single-particle diffusion constants identical to that of NVE dynamics, the simulations show that all five dynamics are equivalent at low temperatures except at short times. © 2011 American Institute of Physics.
CITATION STYLE
Ingebrigtsen, T. S., Toxvaerd, S., Schrøder, T. B., & Dyre, J. C. (2011). NVU dynamics. II. Comparing to four other dynamics. Journal of Chemical Physics, 135(10). https://doi.org/10.1063/1.3623586
Mendeley helps you to discover research relevant for your work.