Memory-assisted reinforcement learning for diverse molecular de novo design

66Citations
Citations of this article
98Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In de novo molecular design, recurrent neural networks (RNN) have been shown to be effective methods for sampling and generating novel chemical structures. Using a technique called reinforcement learning (RL), an RNN can be tuned to target a particular section of chemical space with optimized desirable properties using a scoring function. However, ligands generated by current RL methods so far tend to have relatively low diversity, and sometimes even result in duplicate structures when optimizing towards desired properties. Here, we propose a new method to address the low diversity issue in RL for molecular design. Memory-assisted RL is an extension of the known RL, with the introduction of a so-called memory unit. As proof of concept, we applied our method to generate structures with a desired AlogP value. In a second case study, we applied our method to design ligands for the dopamine type 2 receptor and the 5-hydroxytryptamine type 1A receptor. For both receptors, a machine learning model was developed to predict whether generated molecules were active or not for the receptor. In both case studies, it was found that memory-assisted RL led to the generation of more compounds predicted to be active having higher chemical diversity, thus achieving better coverage of chemical space of known ligands compared to established RL methods.

Cite

CITATION STYLE

APA

Blaschke, T., Engkvist, O., Bajorath, J., & Chen, H. (2020). Memory-assisted reinforcement learning for diverse molecular de novo design. Journal of Cheminformatics, 12(1). https://doi.org/10.1186/s13321-020-00473-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free