Recent evidence indicates that inflammation plays a critical role in the initiation and progression of hypertensive kidney disease. However, the signaling mechanisms underlying the induction of inflammation are poorly understood. We found that chemokine (C-X-C motif) ligand 16 (CXCL16) was induced in renal tubular epithelial cells in response to angiotensin II in a nuclear factor-κB-dependent manner. To determine whether CXCL16 plays a role in angiotensin II-induced renal inflammation and fibrosis, wild-type and CXCL16 knockout mice were infused with angiotensin II at 1500 ng/kg per minute for up to 4 weeks. Wild-type and CXCL16 knockout mice had comparable blood pressure at baseline. Angiotensin II treatment led to an increase in blood pressure that was similar between wild-type and CXCL16 knockout mice. CXCL16 knockout mice were protected from angiotensin II-induced renal dysfunction, proteinuria, and fibrosis. CXCL16 deficiency suppressed bone marrow-derived fibroblast accumulation and myofibroblast formation in the kidneys of angiotensin II-treated mice, which was associated with less expression of extracellular matrix proteins. Furthermore, CXCL16 deficiency inhibited infiltration of F4/80+ macrophages and CD3+ T cells in the kidneys of angiotensin II-treated mice compared with wild-type mice. Finally, CXCL16 deficiency reduced angiotensin II-induced proinflammatory cytokine expressions in the kidneys. Taken together, our results indicate that CXCL16 plays a pivotal role in the pathogenesis of angiotensin II-induced renal injury and fibrosis through regulation of macrophage and T cell infiltration and bone marrow-derived fibroblast accumulation. © 2013 American Heart Association, Inc.
CITATION STYLE
Xia, Y., Entman, M. L., & Wang, Y. (2013). Critical role of CXCL16 in hypertensive kidney injury and fibrosis. Hypertension, 62(6), 1129–1137. https://doi.org/10.1161/HYPERTENSIONAHA.113.01837
Mendeley helps you to discover research relevant for your work.