Distinct Topological Surface States on the Two Terminations of MnBi4Te7

78Citations
Citations of this article
72Readers
Mendeley users who have this article in their library.

Abstract

The recently discovered intrinsic magnetic topological insulator MnBi2Te4 has been met with unusual success in hosting emergent phenomena such as the quantum anomalous Hall effect and the axion insulator states. However, the surface-bulk correspondence of the Mn-Bi-Te family, composed by the superlatticelike MnBi2Te4/(Bi2Te3)n (n=0,1,2,3...) layered structure, remains intriguing but elusive. Here, by using scanning tunneling microscopy and angle-resolved photoemission spectroscopy techniques, we unambiguously assign the two distinct surface states of MnBi4Te7 (n=1) to the quintuple-layer (QL) Bi2Te3 termination and the septuple-layer (SL) MnBi2Te4 termination, respectively. A comparison of the experimental observations with theoretical calculations reveals diverging topological behaviors, especially the hybridization effect between the QL and SL, on the two terminations. We identify a gap on the QL termination, originating from the hybridization between the topological surface states of the QL and the bands of the SL beneath, and a gapless Dirac-cone band structure on the SL termination with time-reversal symmetry. The quasiparticle interference patterns further confirm the topological nature of the surface states for both terminations, continuing far above the Fermi energy. The QL termination carries a spin-helical Dirac state with hexagonal warping, while at the SL termination, a strongly canted helical state from the surface lies between a pair of Rashba-like splitting bands from its neighboring layer. Our work elucidates an unprecedented hybridization effect between the building blocks of the topological surface states and also reveals the termination-dependent time-reversal symmetry breaking in a magnetic topological insulator.

Cite

CITATION STYLE

APA

Wu, X., Li, J., Ma, X. M., Zhang, Y., Liu, Y., Zhou, C. S., … Zhao, Y. (2020). Distinct Topological Surface States on the Two Terminations of MnBi4Te7. Physical Review X, 10(3). https://doi.org/10.1103/PhysRevX.10.031013

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free