Background: Matrix Gla protein (MGP) is a small vitamin K-dependent protein containing five γ-carboxyglutamic acid (Gla) residues that are believed to be important in binding Ca2+, calcium crystals and bone morphogenetic protein. In addition, MGP contains phosphorylated serine residues that may further regulate its activity. In vivo, MGP has been shown to be a potent inhibitor of vascular calcification; however, the precise molecular mechanism underlying the function of MGP is not yet fully understood. Methods and results: We investigated the effects of MGP in human vascular smooth muscle cell (VSMC) monolayers that undergo calcification after exposure to an increase in Ca2+ concentration. Increased calcium salt deposition was found in cells treated with the vitamin K antagonist warfarin as compared to controls, whereas cells treated with vitamin K1 showed decreased calcification as compared to controls. With conformation-specific antibodies, it was confirmed that warfarin treatment of VSMCs resulted in uncarboxylated (Gla-deficient) MGP. To specifically test the effects of MGP on VSMC calcification, we used full-length synthetic MGP and MGP-derived peptides representing various domains in MGP. Full length MGP, the γ-carboxylated motif (Gla) (amino acids 35-54) and the phosphorylated serine motif (amino acids 3-15) inhibited calcification. Furthermore, we showed that the peptides were not taken up by VSMCs but bound to the cell surface and to vesicle-like structures. Conclusions: These data demonstrate that both γ-glutamyl carboxylation and serine phosphorylation of MGP contribute to its function as a calcification inhibitor and that MGP may inhibit calcification via binding to VSMC-derived vesicles. © 2007 International Society on Thrombosis and Haemostasis.
CITATION STYLE
Schurgers, L. J., Spronk, H. M. H., Skepper, J. N., Hackeng, T. M., Shanahan, C. M., Vermeer, C., … Proudfoot, D. (2007). Post-translational modifications regulate matrix Gla protein function: Importance for inhibition of vascular smooth muscle cell calcification. Journal of Thrombosis and Haemostasis, 5(12), 2503–2511. https://doi.org/10.1111/j.1538-7836.2007.02758.x
Mendeley helps you to discover research relevant for your work.