Skip to main content

High-order similarity relations in radiative transfer

23Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.
Get full text
This PDF is freely available from an open access repository. It may not have been peer-reviewed.

Abstract

Radiative transfer equations (RTEs) with different scattering parameters can lead to identical solution radiance fields. Similarity theory studies this effect by introducing a hierarchy of equivalence relations called "similarity relations". Unfortunately, given a set of scattering parameters, it remains unclear how to find altered ones satisfying these relations, significantly limiting the theory's practical value. This paper presents a complete exposition of similarity theory, which provides fundamental insights into the structure of the RTE's parameter space. To utilize the theory in its general high-order form, we introduce a new approach to solve for the altered parameters including the absorption and scattering coefficients as well as a fully tabulated phase function. We demonstrate the practical utility of our work using two applications: forward and inverse rendering of translucent media. Forward rendering is our main application, and we develop an algorithm exploiting similarity relations to offer "free" speedups for Monte Carlo rendering of optically dense and forward-scattering materials. For inverse rendering, we propose a proof-of-concept approach which warps the parameter space and greatly improves the efficiency of gradient descent algorithms. We believe similarity theory is important for simulating and acquiring volume-based appearance, and our approach has the potential to benefit a wide range of future applications in this area. Copyright © ACM.

Cite

CITATION STYLE

APA

Zhao, S., Ramamoorthi, R., & Bala, K. (2014). High-order similarity relations in radiative transfer. In ACM Transactions on Graphics (Vol. 33). Association for Computing Machinery. https://doi.org/10.1145/2601097.2601104

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free