Deriving and validating an asthma diagnosis prediction model for children and young people in primary care

2Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Introduction: Accurately diagnosing asthma can be challenging. We aimed to derive and validate a prediction model to support primary care clinicians assess the probability of an asthma diagnosis in children and young people. Methods: The derivation dataset was created from the Avon Longitudinal Study of Parents and Children (ALSPAC) linked to electronic health records. Participants with at least three inhaled corticosteroid prescriptions in 12-months and a coded asthma diagnosis were designated as having asthma. Demographics, symptoms, past medical/family history, exposures, investigations, and prescriptions were considered as candidate predictors. Potential candidate predictors were included if data were available in ≥60% of participants. Multiple imputation was used to handle remaining missing data. The prediction model was derived using logistic regression. Internal validation was completed using bootstrap re-sampling. External validation was conducted using health records from the Optimum Patient Care Research Database (OPCRD). Results: Predictors included in the final model were wheeze, cough, breathlessness, hay-fever, eczema, food allergy, social class, maternal asthma, childhood exposure to cigarette smoke, prescription of a short acting beta agonist and the past recording of lung function/reversibility testing. In the derivation dataset, which comprised 11,972 participants aged <25 years (49% female, 8% asthma), model performance as indicated by the C-statistic and calibration slope was 0.86, 95% confidence interval (CI) 0.85–0.87 and 1.00, 95% CI 0.95–1.05 respectively. In the external validation dataset, which included 2,670 participants aged <25 years (50% female, 10% asthma), the C-statistic was 0.85, 95% CI 0.83–0.88, and calibration slope 1.22, 95% CI 1.09–1.35. Conclusions: We derived and validated a prediction model for clinicians to calculate the probability of asthma diagnosis for a child or young person up to 25 years of age presenting to primary care. Following further evaluation of clinical effectiveness, the prediction model could be implemented as a decision support software.

Cite

CITATION STYLE

APA

Daines, L., Bonnett, L. J., Tibble, H., Boyd, A., Thomas, R., Price, D., … Pinnock, H. (2023). Deriving and validating an asthma diagnosis prediction model for children and young people in primary care. Wellcome Open Research, 8. https://doi.org/10.12688/wellcomeopenres.19078.2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free