Corrigendum to "Measuring the 3-D wind vector with a weight-shift microlight aircraft" published in Atmos. Meas. Tech., 4, 1421–1444, 2011

  • Metzger S
  • Junkermann W
  • Butterbach-Bahl K
  • et al.
N/ACitations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Abstract. This study investigates whether the 3-D wind vector can be measured reliably from a highly transportable and low-cost weight-shift microlight aircraft. We draw up a transferable procedure to accommodate flow distortion originating from the aircraft body and -wing. This procedure consists of the analysis of aircraft dynamics and seven successive calibration steps. For our aircraft the horizontal wind components receive their greatest single amendment (14 %, relative to the initial uncertainty) from the correction of flow distortion magnitude in the dynamic pressure computation. Conversely the vertical wind component is most of all improved (31 %) by subsequent steps considering the 3-D flow distortion distribution in the flow angle computations. Therein the influences of the aircraft's trim (53 %), as well as changes in the aircraft lift (16 %) are considered by using the measured lift coefficient as explanatory variable. Three independent lines of analysis are used to evaluate the quality of the wind measurement: (a) A wind tunnel study in combination with the propagation of sensor uncertainties defines the systems input uncertainty to ≈0.6 m s−1 at the extremes of a 95 % confidence interval. (b) During severe vertical flight manoeuvres the deviation range of the vertical wind component does not exceed 0.3 m s−1. (c) The comparison with ground based wind measurements yields an overall operational uncertainty (root mean square error) of ≈0.4 m s−1 for the horizontal and ≈0.3 m s−1 for the vertical wind components. No conclusive dependence of the uncertainty on the wind magnitude (<8 m s−1) or true airspeed (ranging from 23–30 m s−1) is found. Hence our analysis provides the necessary basis to study the wind measurement precision and spectral quality, which is prerequisite for reliable Eddy-Covariance flux measurements.

Cite

CITATION STYLE

APA

Metzger, S., Junkermann, W., Butterbach-Bahl, K., Schmid, H. P., & Foken, T. (2011). Corrigendum to “Measuring the 3-D wind vector with a weight-shift microlight aircraft” published in Atmos. Meas. Tech., 4, 1421–1444, 2011. Atmospheric Measurement Techniques, 4(7), 1515–1539. https://doi.org/10.5194/amt-4-1515-2011

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free