Renal cortical oxygen tension is decreased following exposure to long-term but not short-term intermittent hypoxia in the rat

13Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

—Chronic kidney disease (CKD) occurs in more than 50% of patients with obstructive sleep apnea (OSA). However, the impact of intermittent hypoxia (IH) on renal function and oxygen homeostasis is unclear. Male Sprague-Dawley rats were exposed to IH (270 s at 21% O2; 90 s hypoxia, 6.5% O2 at nadir) for 4 h [acute IH (AIH)] or to chronic IH (CIH) for 8 h/day for 2 wk. Animals were anesthetized and surgically prepared for the measurement of mean arterial pressure (MAP), and left renal excretory function, renal blood flow (RBF), and renal oxygen tension (PO2). AIH had no effect on MAP (123 ± 14 vs. 129 ± 14 mmHg, means ± SE, sham vs. IH). The CIH group was hypertensive (122 ± 9 vs. 144 ± 15 mmHg, P < 0.05). Glomerular filtration rate (GFR) (0.92 ± 0.27 vs. 1.33 ± 0.33 ml/min), RBF (3.8 ± 1.5 vs. 7.2 ± 2.4 ml/min), and transported sodium (TNa) (132 ± 39 vs. 201 ± 47 µmol/min) were increased in the AIH group (all P < 0.05). In the CIH group, GFR (1.25 ± 0.28 vs. 0.86 ± 0.28 ml/min, P < 0.05) and TNa (160 ± 39 vs. 120 ± 40 µmol/min, P < 0.05) were decreased, while RBF (4.13 ± 1.5 vs. 3.08 ± 1.5 ml/min) was not significantly different. Oxygen consumption (QO2) was increased in the AIH group (6.76 ± 2.60 vs. 13.60 ± 7.77 µmol/min, P < 0.05), but it was not significantly altered in the CIH group (3.97 ± 2.63 vs. 6.82 ± 3.29 µmol/min). Cortical PO2 was not significantly different in the AIH group (46 ± 4 vs. 46 ± 3 mmHg), but it was decreased in the CIH group (44 ± 5 mmHg vs. 38 ± 2 mmHg, P < 0.05). For AIH, renal oxygen homeostasis was preserved through a maintained balance between O2 supply (RBF) and consumption (GFR). For CIH, mismatched TNa and QO2 reflect inefficient O2 utilization and, thereby, sustained decrease in cortical PO2.

Cite

CITATION STYLE

APA

O’neill, J., Jasionek, G., Drummond, S. E., Brett, O., Lucking, E. F., Abdulla, M. A., & O’halloran, K. D. (2019). Renal cortical oxygen tension is decreased following exposure to long-term but not short-term intermittent hypoxia in the rat. American Journal of Physiology - Renal Physiology, 316(4), F635–F645. https://doi.org/10.1152/ajprenal.00254.2018

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free