Commelina guard cells can be rapidly closed by abscisic acid (ABA), and it is thought that this signal is always transduced through increases in cytosolic calcium. However, when Commelina plants were grown at 10 to 17°C, most guard cells failed to exhibit any ABA-induced increase in cytosolic calcium even though all of these cells closed. At growth temperatures of 25°C or above, ABA-induced closure was always associated with an increase in cytosolic calcium. This suggests that there may be two transduction routes for ABA in guard cells; only one involves increases in cytosolic calcium. Activation of either pathway on its own appears to be sufficient to cause closure. Because the rates of ABA accumulation and transport in plants grown at different temperatures are likely to be different, we synthesized and microinjected caged ABA directly into guard cells. ABA was released internally by UV photolysis and subsequently caused stomatal closure. This result suggests a possible intracellular locale for the hypothesized ABA receptor.
CITATION STYLE
Allan, A. C., Fricker, M. D., Ward, J. L., Beale, M. H., & Trewavas, A. J. (1994). Two transduction pathways mediate rapid effects of abscisic acid in Commelina guard cells. Plant Cell, 6(9), 1319–1328. https://doi.org/10.2307/3869829
Mendeley helps you to discover research relevant for your work.