Skip to main content

Growth of multicrystalline silicon for solar cells: The high-performance casting method

1Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The emergence of high-performance multicrystalline silicon (HP mc-Si) in 2011 has made a significant impact to photovoltaic (PV) industry. In addition to the much better ingot uniformity and production yield, HP mc-Si also has better material quality for solar cells. As a result, the average efficiency of solar cells made from HP mc-Si in production increased from 16.6% in 2011 to 18.5% or beyond in 2016. With an advanced cell structure, an average efficiency of more than 20% has also been reported. More importantly, the efficiency distribution became much narrower; the difference even from various wafer producers became smaller as well. Unlike the conventional way of having large grains and electrically inactive twin boundaries, the crystal growth of HP mc-Si by directional solidification is initiated from uniform small grains having a high fraction of random grain boundaries (GBs). The grains developed from such grain structures significantly relax thermal stress and suppress the massive generation and propagation of dislocation clusters. The gettering efficacy of HP mc-Si is also superior to the conventional one, which also increases solar cell efficiency. Nowadays, most of commercial mc-Si is grown by this approach, which could be implemented by either seeded with silicon particles or controlled nucleation, e.g., through nucleation agent coating. The future improvement of this technology is also discussed in this chapter.

Cite

CITATION STYLE

APA

Lan, C. W. (2019). Growth of multicrystalline silicon for solar cells: The high-performance casting method. In Handbook of Photovoltaic Silicon (pp. 175–191). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-56472-1_34

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free