Skip to main content

Dynamics of epidemic diseases without guaranteed immunity

0Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This artice is free to access.

Abstract

The pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) suggests a novel type of disease spread dynamics. We here study the case where infected agents recover and only develop immunity if they are continuously infected for some time τ. For large τ, the disease model is described by a statistical field theory. Hence, the phases of the underlying field theory characterise the disease dynamics: (i) a pandemic phase and (ii) a response regime. The statistical field theory provides an upper bound of the peak rate of infected agents. An effective control strategy needs to aim to keep the disease in the response regime (no ‘second’ wave). The model is tested at the quantitative level using an idealised disease network. The model excellently describes the epidemic spread of the SARS-CoV-2 outbreak in the city of Wuhan, China. We find that only 30% of the recovered agents have developed immunity.

Cite

CITATION STYLE

APA

Langfeld, K. (2021). Dynamics of epidemic diseases without guaranteed immunity. Journal of Mathematics in Industry, 11(1). https://doi.org/10.1186/s13362-021-00101-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free