To deal with a new-developed ferrite and pearlite wheel material named D1, an alternative ordinary state-based peridynamic model for fatigue cracking is introduced due to cyclic loading. The proposed damage model communicates across the microcrack initiation to the macrocrack growth and does not require additional criteria. Model parameters are verified from experimental data. Each bond in the deformed material configuration is built as a fatigue specimen subjected to variable amplitude loading. Fatigue crack initiation and crack growth developed naturally over many loading cycles, which is controlled by the parameter "node damage" within a region of finite radius. Critical damage factors are also imposed to improve efficiency and stability for the fatigue model. Based on the improved adaptive dynamic relaxation method, the static solution is obtained in every loading cycle. Convergence analysis is presented in smooth fatigue specimens at different loading levels. Experimental results show that the proposed peridynamic fatigue model captures the crack sensitive location well without extra criteria and the fatigue life obtained from the simulation has a good correlation with the experimental results.
CITATION STYLE
Han, J., & Chen, W. (2020). An ordinary state-based peridynamic model for fatigue cracking of ferrite and pearlite wheel material. Applied Sciences (Switzerland), 10(12). https://doi.org/10.3390/app10124325
Mendeley helps you to discover research relevant for your work.