Biodiesel-contaminated wastewater was used to screen for PHAs-producing bacteria by using crude glycerol as the sole carbon source. A gram-negative THA-AIK7 isolate was chosen as a potential PHAs producer. The 16S rRNA phylogeny indicated that THA-AIK7 isolate is a member of Novosphingobium genus which is supported by a bootstrap percentage of 100% with Novosphingobium capsulatum. The 1,487 bp of 16S rRNA gene sequence of THA-AIK7 isolate has been deposited in the GenBank database under the accession number HM031593. Polymer content of 45% cell dry weight was achieved in 72 h with maximum product yield coefficient of 0.29 g PHAs g -1 glycerol. Transmission electron micrograph results exhibited the PHAs granules accumulated inside the bacterial cell. PHAs polymer production in mineral salt media supplemented with 2% (w/v) of crude glycerol at initial pH 7 was extracted by the sodium hypochlorite method. Polymer film spectrographs from Nuclear magnetic resonance displayed a pattern of signal virtually identical to spectra of commercial PHB. Thermal analysis by Differential scanning calorimeter showed a melting temperature at 179C°. Molecular weight analysis by Gel permeation chromatography showed two main peaks of 133,000 and 700 g mol-1 with weight-average molecular weight value of 23,800 and number-average molecular weight value of 755. Endotoxinfree of PHAs polymer was preliminarily assessed by a negative result of the gel-clot formation, Pyrotell Single test vial, at sensitivity of 0.25 EU ml -1. To our knowledge, this is the first reported test of endotoxin-free PHAs naturally produced from gram-negative bacteria which could be used for biomedical application. © Society for Industrial Microbiology and Biotechnology 2012.
CITATION STYLE
Teeka, J., Imai, T., Reungsang, A., Cheng, X., Yuliani, E., Thiantanankul, J., … Sekine, M. (2012). Characterization of polyhydroxyalkanoates (PHAs) biosynthesis by isolated Novosphingobium sp. THA-AIK7 using crude glycerol. Journal of Industrial Microbiology and Biotechnology, 39(5), 749–758. https://doi.org/10.1007/s10295-012-1084-2
Mendeley helps you to discover research relevant for your work.