We consider the role magnetic fields play in guiding and controlling mass-loss via evaporative outflows from exoplanets that experience UV irradiation. First, we present analytic results that account for planetary and stellar magnetic fields, along with mass-loss from both the star and planet. We then conduct series of numerical simulations for gas giant planets, and vary the planetary field strength, background stellar field strength, UV heating flux, and planet mass. These simulations show that the flow is magnetically controlled for moderate field strengths and even the highest UV fluxes, i.e. planetary surface fields BP ≳ 0.3 G and fluxes FUV ~ 106 erg s-1. We thus conclude that outflows from all hot Jupiters with moderate surface fields are magnetically controlled. The inclusion of magnetic fields highly suppresses outflow from the night side of the planet. Only the magnetic field lines near the pole are open and allow outflow to occur. The fraction of open field lines depends sensitively on the strength (and geometry) of the background magnetic field from the star, along with the UV heating rate. The net effect of the magnetic field is to suppress the mass-loss rate by (approximately) an order of magnitude. Finally, some open field lines do not allow the flow to pass smoothly through the sonic point; flow along these streamlines does not reach a steady state, resulting in time-variable mass-loss.
CITATION STYLE
Owen, J. E., & Adams, F. C. (2014). Magnetically controlled mass-loss from extrasolar planets in close orbits. Monthly Notices of the Royal Astronomical Society, 444(4), 3761–3779. https://doi.org/10.1093/mnras/stu1684
Mendeley helps you to discover research relevant for your work.