In isolated hippocampal slices, decaying long-term potentiation can be stabilized and converted to late long-term potentiation lasting many hours, by prior or subsequent strong high-frequency tetanization of an independent input to a common population of neurons - a phenomenon known as 'synaptic tagging and capture'. Here we show that the same phenomenon occurs in the intact rat. Late long-term potentiation can be induced in CA1 during the inhibition of protein synthesis if an independent input is strongly tetanized beforehand. Conversely, declining early long-term potentiation induced by weak tetanization can be converted into lasting late long-term potentiation by subsequent strong tetanization of a separate input. These findings indicate that synaptic tagging and capture is not limited to in vitro preparations; the past and future activity of neurons has a critical role in determining the persistence of synaptic changes in the living animal, thus providing a bridge between cellular studies of protein synthesis-dependent synaptic potentiation and behavioural studies of memory persistence. © 2012 Macmillan Publishers Limited.
CITATION STYLE
Shires, K. L., Da Silva, B. M., Hawthorne, J. P., Morris, R. G. M., & Martin, S. J. (2012). Synaptic tagging and capture in the living rat. Nature Communications, 3. https://doi.org/10.1038/ncomms2250
Mendeley helps you to discover research relevant for your work.