When a high power laser beam irradiates a small aperture on a solid foil target, the strong laser field drives surface plasma oscillation at the periphery of this aperture, which acts as a "relativistic oscillating window."The diffracted light that travels though such an aperture contains high-harmonics of the fundamental laser frequency. When the driving laser beam is circularly polarized, the high-harmonic generation (HHG) process facilitates a conversion of the spin angular momentum of the fundamental light into the intrinsic orbital angular momentum of the harmonics. By means of theoretical modeling and fully 3D particle-in-cell simulations, it is shown the harmonic beams of order n are optical vortices with topological charge |l|=n-1, and a power-law spectrum In∝n-3.5 is produced for sufficiently intense laser beams, where In is the intensity of the nth harmonic. This work opens up a new realm of possibilities for producing intense extreme ultraviolet vortices, and diffraction-based HHG studies at relativistic intensities.
CITATION STYLE
Yi, L. (2021). High-Harmonic Generation and Spin-Orbit Interaction of Light in a Relativistic Oscillating Window. Physical Review Letters, 126(13). https://doi.org/10.1103/PhysRevLett.126.134801
Mendeley helps you to discover research relevant for your work.