Resistance to apoptosis is a hallmark of cancer cells. We report here that PINCH-1, a cytoplasmic component of cell-extracellular matrix adhesions, is required for protection of multiple types of cancer cells from apoptosis. Furthermore, using HT-1080 fibrosarcoma cells as a model system, we have investigated the signaling pathway through which PINCH-1 contributes to apoptosis resistance. Loss of PINCH-1 markedly increases the level of Bim and promotes Bim translocation to mitochondria, resulting in activation of the intrinsic apoptosis pathway. Depletion of Bim completely blocked apoptosis induced by the loss of PINCH-1. Thus, PINCH-1 contributes to apoptosis resistance through suppression of Bim. Mechanistically, PINCH-1 suppresses Bim not only transcriptionally but also post-transcriptionally. PINCH-1 promotes activating phosphorylation of Src family kinase and ERK1/2. Consistent with this, ERK1/2-mediated Ser69 phosphorylation of Bim, a key signal for turnover of Bim, is suppressed by the removal of PINCH-1. Our results demonstrate a strong dependence of multiple types of apoptosis-resistant cancer cells on PINCH-1 and provide new insights into the molecular mechanism by which cancer cells are protected from apoptosis. © 2008 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Chen, K., Tu, Y., Zhang, Y., Blair, H. C., Zhang, L., & Wu, C. (2008). PINCH-1 regulates the ERK-Bim pathway and contributes to apoptosis resistance in cancer cells. Journal of Biological Chemistry, 283(5), 2508–2517. https://doi.org/10.1074/jbc.M707307200
Mendeley helps you to discover research relevant for your work.