Indian handwritten script identification system based on random forest tree ensembles

N/ACitations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The work proposal addresses to introduce a methodology for Indian unconstrained handwritten script identification by practicing distinct features and classifiers. By utilizing classifiers like RF, SVM, k-NN, and LDA for Indian script identification using statistical, geometric, and structural features. To preserve all the information present on handwritten documents such as historical, medieval, inscription, financial administration, public records, government archives, letters, land councils, various agreements, etc. in digitalize form needs textual document processing system (e.g. OCR). To build a precise and productive multi-script/language textual document processing system must have script identification. For this study use, total 1288 (line wise) samples of ten scripts use in India are collected from different persons of different gender, age, education and region (rural or urban). After successful training and testing, 81.8% and 0.252 accuracies and the OOB error rate are achieved by Random Forest respectively. And 77.8%, 73.5%, and 65.5% accuracy is achieved in SVM, k-NN and LDA classifiers respectively.

Cite

CITATION STYLE

APA

Ganorkar, L. P., & Rojatkar, D. V. (2019). Indian handwritten script identification system based on random forest tree ensembles. International Journal of Recent Technology and Engineering, 8(2), 2097–2103. https://doi.org/10.35940/ijrte.B2322.078219

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free