Cu/ZnO/CeO2 Supported on MOF-5 as a Novel Catalyst for the CO2 Hydrogenation to Methanol: A Mechanistic Study on the Effect of CeO2 and MOF-5 on Active Sites

6Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cu/ZnO/CeO2 nanocomposite was supported on metal organic framework (MOF-5) to enhance active sites dispersion and control the nanoparticles agglomeration during synthesis through strong metal-support interactions. The incorporation of MOF-5 alleviated the obstacle facing the commercial ternary Cu/ZnO/Al2O3 regarding low surface area due to nanoparticles agglomeration. In addition, Cu/ZnO/CeO2@MOF-5 gave higher methanol selectivity than the commercial catalyst which can be accounted for by the interfacial sites generated between MOF-5 and Cu/ZnO which favour methanol synthesis over carbon monoxide through regulating the intermediates bonding energies. CeO2 as support for Cu/ZnO nanoparticles was also compared with commercial support and showed to have led to smaller particle size and superior dispersion of Cu active sites as well. Cu/ZnO/CeO2@MOF-5 resulted in methanol STY of 23.3 mg gcat h−1 and selectivity of 79% at mild reaction temperature (260 °C) and pressure (10 bar). Two different MOFs including cerium based MOF and ZIF-8 demonstrated inferior performance compared to MOF-5. Graphical Abstract: (Figure presented.)

Cite

CITATION STYLE

APA

Vali, S. A., Moral-Vico, J., Font, X., & Sánchez, A. (2024). Cu/ZnO/CeO2 Supported on MOF-5 as a Novel Catalyst for the CO2 Hydrogenation to Methanol: A Mechanistic Study on the Effect of CeO2 and MOF-5 on Active Sites. Catalysis Letters, 154(7), 3157–3173. https://doi.org/10.1007/s10562-023-04554-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free