Generation of highly inclined protoplanetary discs through single stellar flybys

26Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We study the three-dimensional evolution of a viscous protoplanetary disc which is perturbed by a passing star on a parabolic orbit. The aim is to test whether a single stellar flyby is capable to excite significant disc inclinations which would favour the formation of so-called misaligned planets. We use smoothed particle hydrodynamics to study inclination, disc mass and angular momentum changes of the disc for passing stars with different masses. We explore different orbital configurations for the perturber's orbit to find the parameter spaces which allow significant disc inclination generation. Prograde inclined parabolic orbits aremost destructive leading to significant disc mass and angular momentum loss. In the remaining disc, the final disc inclination is only below 20°. This is due to the removal of disc particles which have experienced the strongest perturbing effects. Retrograde inclined parabolic orbits are less destructive and can generate disc inclinations up to 60°. The final disc orientation is determined by the precession of the disc angular momentum vector about the perturber's orbital angular momentum vector and by disc orbital inclination changes. We propose a sequence of stellar flybys for the generation of misalignment angles above 60°. The results taken together show that stellar flybys are promising and realistic for the explanation of misaligned Hot Jupiters with misalignment angles up to 60°.

Cite

CITATION STYLE

APA

Xiang-Gruess, M. (2016). Generation of highly inclined protoplanetary discs through single stellar flybys. Monthly Notices of the Royal Astronomical Society, 455(3), 3086–3100. https://doi.org/10.1093/mnras/stv2514

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free