Messenger RNAs with large numbers of upstream open reading frames are translated via leaky scanning and reinitiation in the asexual stages of Plasmodium falciparum

7Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The genome of Plasmodium falciparum has one of the most skewed base-pair compositions of any eukaryote, with an AT content of 80-90%. As start and stop codons are AT-rich, the probability of finding upstream open reading frames (uORFs) in messenger RNAs (mRNAs) is high and parasite mRNAs have an average of 11 uORFs in their leader sequences. Similar to other eukaryotes, uORFs repress the translation of the downstream open reading frame (dORF) in P. falciparum, yet the parasite translation machinery is able to bypass these uORFs and reach the dORF to initiate translation. This can happen by leaky scanning and/or reinitiation. In this report, we assessed leaky scanning and reinitiation by studying the effect of uORFs on the translation of a dORF, in this case, the luciferase reporter gene, and showed that both mechanisms are employed in the asexual blood stages of P. falciparum. Furthermore, in addition to the codon usage of the uORF, translation of the dORF is governed by the Kozak sequence and length of the uORF, and inter-cistronic distance between the uORF and dORF. Based on these features whole-genome data was analysed to uncover classes of genes that might be regulated by uORFs. This study indicates that leaky scanning and reinitiation appear to be widespread in asexual stages of P. falciparum, which may require modifications of existing factors that are involved in translation initiation in addition to novel, parasite-specific proteins.

Cite

CITATION STYLE

APA

Kaur, C., Kumar, M., & Patankar, S. (2020). Messenger RNAs with large numbers of upstream open reading frames are translated via leaky scanning and reinitiation in the asexual stages of Plasmodium falciparum. Parasitology, 147(10), 1100–1113. https://doi.org/10.1017/S0031182020000840

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free